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Abstract: 

The convergence of deep learning (DL), the Internet of Things (IoT), and nanosensor 

technology heralds a transformative paradigm for real-time, high-fidelity monitoring in 

environmental and biomedical fields. This work presents an integrated framework 

where advanced nanostructured sensing materials, functionalized for specific analytes 

(e.g., pathogens, heavy metals, biomarkers), are interfaced with IoT-enabled readout 

systems. The core innovation lies in embedding DL algorithms directly within the 

sensor-edge architecture to address critical challenges such as signal drift, non-specific 

interference, and complex multi-analyte signal deconvolution in noisy real-world 

settings. We propose a hybrid Convolutional Neural Network-Long Short-Term 

Memory (CNN-LSTM) model optimized for deployment on resource-constrained edge 

devices, enabling adaptive calibration, anomaly detection, and predictive analytics. 
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Preliminary validation demonstrates a system capable of simultaneous detection of E. 

coli and lead ions in water, and cortisol and glucose in simulated serum. The DL-

enhanced system achieved a mean accuracy of 98.7%, significantly outperforming 

conventional linear calibration methods (78.2%). This intelligent nanosensor network 

offers a scalable, autonomous solution for precision monitoring, enabling early warning 

systems and personalized health diagnostics. 

Keywords: Deep Learning, Internet of Things, Nanosensors, Environmental 

Monitoring, Biomedical Diagnostics, Edge Computing. 

1. Introduction 

The 21st century faces unprecedented challenges in environmental sustainability and 

personalized healthcare. Continuous, precise monitoring is critical for managing 

pollution, ensuring water safety, and enabling proactive medical interventions [1]-[3]. 

Nanosensors, leveraging materials like graphene, carbon nanotubes, and metallic 

nanoparticles, offer extraordinary sensitivity due to their high surface-to-volume ratio 

and tunable surface chemistry. Simultaneously, the IoT provides the infrastructure for 

connecting physical devices, enabling data aggregation and remote access. However, 

raw data from nanosensors is often plagued by non-linearity, cross-sensitivity, and 

signal instability. Deep Learning, a subset of artificial intelligence, excels at discovering 

intricate patterns in high-dimensional, noisy data. Its hierarchical feature extraction 

capability is ideally suited to interpret complex, multi-modal sensor signals, 

transforming raw data into actionable insights [4]. 

Despite their potential, the widespread deployment of nanosensor networks for critical 

monitoring remains hindered by several intertwined issues. First, nanosensors are 

inherently prone to drift and poisoning in dynamic, unfiltered environments (e.g., 

wastewater, biological fluids), leading to unreliable data [5]-[6]. Second, discriminating 

between target analytes and confounding interferents in complex matrices is a 

formidable analytical challenge, often requiring bulky, laboratory-based 

instrumentation. Third, the vast, continuous data streams generated by distributed 

sensor nodes overwhelm traditional cloud-centric IoT models, causing latency, privacy 
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concerns, and high bandwidth costs. Existing solutions typically rely on periodic 

manual recalibration or simplistic cloud-based analysis, which are neither scalable nor 

real-time. There is a critical gap in creating intelligent, self-adaptive nanosensor 

systems that can perform robust, on-site signal processing and decision-making [7]-

[15]. 

This work introduces a novel, DL-driven co-design of the sensing material, hardware 

interface, and data analytics stack. The key novelties are: 

1. Algorithm-Sensor Co-optimization: The DL model architecture is informed by 

the known physical and chemical response characteristics of the nanosensors, 

moving beyond a purely data-driven "black box" approach. 

2. Edge-Native Intelligence: Deployment of a pruned quantized CNN-LSTM 

model directly on a low-power microcontroller unit (MCU) within the sensor 

node, enabling real-time inference without constant cloud dependency. This 

ensures low latency, enhanced privacy, and operational resilience. 

3. Multi-Task, Multi-Modal Learning: A single DL model is trained to 

simultaneously perform analyte quantification, sensor health diagnosis (drift 

detection), and data quality flagging, leveraging both temporal (LSTM) and 

spectral/spatial (CNN) features of the sensor signal. 

4. Open-Source Framework: Provision of a complete hardware blueprint and 

software repository for the IoT gateway and edge DL model, facilitating 

replication and advancement in the community. 

The primary objective is to design, fabricate, and validate a fully integrated DL-IoT-

nanosensor platform for dual-use in environmental and biomedical monitoring. Specific 

objectives are: 

1. To functionalize and characterize multiplexed electrochemical nanosensors for 

target analytes in water (heavy metals, pathogens) and simulated biological 

fluids (metabolites, hormones). 
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2. To develop and train a hybrid CNN-LSTM model capable of accurate analyte 

concentration prediction and sensor condition monitoring from time-series 

impedance and voltammetric data. 

3. To implement model compression techniques (pruning, quantization) for 

deployment on an edge IoT device (e.g., ESP32 with AI accelerators) and design 

a low-power IoT gateway for secure data transmission. 

4. To empirically validate the system's performance in controlled and semi-

controlled environments, benchmarking its accuracy, precision, and robustness 

against state-of-the-art methods. 

5. To demonstrate a proof-of-concept distributed network where multiple nodes 

communicate processed alerts to a central dashboard. 

2. Proposed Methodology 

The proposed methodology follows a holistic pipeline from sensor fabrication to cloud 

dashboard, with embedded DL as the core processor. 

The system comprises three layers: 

1. Sensing Layer: Custom-fabricated screen-printed electrodes (SPEs) 

functionalized with nanomaterials (e.g., AuNP-decorated reduced graphene 

oxide for heavy metals, antibody-conjugated ZnO nanowires for pathogens). The 

analog front-end is a miniaturized potentiostat (e.g., LMP91000 or AD5940) 

controlled by an MCU. 

2. Edge Intelligence Layer: The primary MCU (e.g., ESP32-S3 with vector 

extension) runs the compressed DL model. It collects raw cyclic voltammetry 

(CV) or electrochemical impedance spectroscopy (EIS) data, performs real-time 

inference, and outputs concentration, confidence score, and sensor health status. 

3. Cloud & User Layer: Processed data packets (greatly reduced in size) are sent 

via LoRaWAN/Wi-Fi/BLE to an IoT gateway (Raspberry Pi), which relays it to 
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a secure cloud server (AWS IoT Core). A web dashboard visualizes real-time 

maps, trends, and alerts. 

 

   Figure 1: Proposed Framework Model 

Algorithm Steps: 

A. Data Acquisition & Preprocessing: 

1. Stimulus Application: MCU instructs the potentiostat to apply a voltage sweep 

(CV) or AC frequency sweep (EIS) to the working electrode. 

2. Signal Conditioning: Raw current/voltage data is filtered using a moving 

average filter and normalized to a baseline recorded in a clean buffer. 

3. Feature Window Creation: For CV, the data point vector forms a 1D "image". 

For EIS, Nyquist plot coordinates are used. A sliding window of the 

last N chronological scans creates the input tensor for temporal analysis. 

B. Deep Learning Model Design & Training (Offline/Cloud): 

We propose a Hybrid CNN-LSTM Model: 
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 Input: 3D Tensor of shape (Timesteps, Data Points per Scan, Channels=1). 

 CNN Block: Two 1D convolutional layers (filters=32,64, kernel=3) with ReLU 

and MaxPooling extract local, invariant features from individual scans (e.g., 

peak shapes, shoulder positions). 

 LSTM Block: The flattened feature sequences from the CNN are fed into a two-

layer LSTM (units=50) to model temporal dependencies and drift patterns across 

sequential measurements. 

 Multi-Task Heads: 

o Head 1 (Regression): Dense layers for concentration prediction of each 

analyte. 

o Head 2 (Classification): Softmax layer for sensor status (Normal, 

Drifting, Fouled). 

 Loss Function: Combined Mean Squared Error (MSE) for regression and 

Categorical Cross-Entropy for classification. 

 Training Data: Generated from lab experiments with systematic variation of 

analyte concentrations and deliberate introduction of interferents and simulated 

drift. 

C. Edge Deployment & Inference (Online/Edge): 

1. Model Compression: The trained TensorFlow/Keras model undergoes pruning 

(removing insignificant weights) and post-training quantization (INT8) using the 

TensorFlow Lite for Microcontrollers (TFLite Micro) framework. 

2. Embedded Code Generation: The quantized .tflite model is converted to a C 

array and integrated into the ESP32 firmware. 

3. On-Device Inference Loop: 

a. New sensor scan is preprocessed. 

b. TFLite Micro interpreter is invoked on the input tensor. 

c. Model outputs concentration values and status probability. 
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d. If status is "Drifting," a self-calibration routine (using an on-board reference 

solution) is triggered. If "Fouled," an alert is sent for maintenance. 

e. Only processed results (or raw data at low frequency for model retraining) are 

transmitted, optimizing bandwidth. 

D. IoT Communication & Cloud Analytics: 

Processed data packets are published via MQTT protocol. The cloud server runs rules 

engines to trigger SMS/email alerts for threshold breaches and aggregates data for long-

term trend analysis using simpler statistical models. 

3. Results and Discussion  

Nanosensor Fabrication: SPEs were modified via drop-casting of nanocomposites. 

SEM confirmed uniform nanostructure morphology. Electrochemical characterization 

showed enhanced active surface area. 

Hardware Platform: The sensing node used an ESP32-S3 MCU (dual-core, 512KB 

SRAM, AI vector instructions) coupled with the AD5940 potentiostat chip for high-

precision, low-noise measurements. A custom PCB integrated power management 

(LiPo battery/solar), the sensor interface, and a LoRa E22 module for long-range 

communication. 

Software Stack: Firmware was developed in Arduino/C++ using the TFLite Micro 

library. The IoT gateway used Python with PyTorch for optional secondary analysis. 

The cloud backend was built on AWS IoT Core, Lambda, and DynamoDB, with a 

React.js dashboard. 

Performance Metrics & Discussion: 

The system was tested for two scenarios: 1) Detection of Pb²⁺ and E. coli in tap water 

spiked with humic acid (interferent). 2) Detection of cortisol and glucose in artificial 

serum. 

A dataset of 15,000 scans per scenario was generated. The model was trained on 70%, 

validated on 15%, and tested on 15%.The table 1 shows the performance comparison. 

https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-532


Musik in Bayern 
ISSN: 0937-583x Volume 90, Issue 12 (Dec -2025)  
https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2025-532 
 

Page | 548  
 

 

Table 1: Performance Comparison (Test Set) 
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99.2 0.991 
0.99
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2 
120 45 
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(in 
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) 
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81.5 0.79 0.83 
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DL 
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) 
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5 
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main 
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ce) 

- 

*Includes network latency and cloud compute time/power. 

The proposed DL-edge system consistently outperformed traditional linear calibration 

by a large margin (>17% accuracy gain), demonstrating its superior ability to handle 

non-linear responses and interference. The performance was nearly on par with a more 

complex cloud-based DL model, but with a 16x reduction in inference latency and 

a 6.7x reduction in system power, crucial for battery-operated field deployments. The 
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high precision and recall across all analytes confirm effective multi-analyte 

discrimination. 

The embedded model's small memory footprint (<150KB) allowed it to reside 

comfortably on the ESP32-S3. The multi-task learning successfully identified simulated 

drift events with >96.5% accuracy, enabling proactive management. The minor 

performance drop in the biomedical scenario is attributed to the higher complexity of 

the serum matrix, suggesting future work on more diverse training data. 

4. Conclusion and Future Work  

This work successfully demonstrated a fully integrated, DL-driven IoT nanosensor 

platform that significantly enhances the reliability and intelligence of environmental 

and biomedical monitoring. By embedding a compressed hybrid CNN-LSTM model 

directly at the edge, the system achieves laboratory-grade analytical performance in 

field-deployable hardware, autonomously mitigating key issues like drift and 

interference. This paradigm shift from "dumb" sensors to "self-aware" intelligent nodes 

reduces bandwidth dependency, ensures real-time response, and enhances system 

robustness. 

Future work will focus on: 1) Implementing federated learning across the sensor 

network to collectively improve models without sharing raw data, enhancing privacy 

and adaptability to local conditions. 2) Exploring self-powered nanosensors using 

energy harvesting (piezoelectric/triboelectric) to create truly autonomous nodes. 3) 

Extending the sensing palette to volatile organic compounds (VOCs) for air quality and 

disease breathalyzer applications. 4) Conducting long-term field trials in real 

wastewater treatment plants and clinical settings to validate durability and performance 

under uncontrolled variability. 
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