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Abstract:

The convergence of deep learning (DL), the Internet of Things (IoT), and nanosensor
technology heralds a transformative paradigm for real-time, high-fidelity monitoring in
environmental and biomedical fields. This work presents an integrated framework
where advanced nanostructured sensing materials, functionalized for specific analytes
(e.g., pathogens, heavy metals, biomarkers), are interfaced with IoT-enabled readout
systems. The core innovation lies in embedding DL algorithms directly within the
sensor-edge architecture to address critical challenges such as signal drift, non-specific
interference, and complex multi-analyte signal deconvolution in noisy real-world
settings. We propose a hybrid Convolutional Neural Network-Long Short-Term
Memory (CNN-LSTM) model optimized for deployment on resource-constrained edge

devices, enabling adaptive calibration, anomaly detection, and predictive analytics.
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Preliminary validation demonstrates a system capable of simultaneous detection of E.
coli and lead 1ons in water, and cortisol and glucose in simulated serum. The DL-
enhanced system achieved a mean accuracy of 98.7%, significantly outperforming
conventional linear calibration methods (78.2%). This intelligent nanosensor network
offers a scalable, autonomous solution for precision monitoring, enabling early warning

systems and personalized health diagnostics.

Keywords: Deep Learning, Internet of Things, Nanosensors, Environmental

Monitoring, Biomedical Diagnostics, Edge Computing.
1. Introduction

The 21st century faces unprecedented challenges in environmental sustainability and
personalized healthcare. Continuous, precise monitoring is critical for managing
pollution, ensuring water safety, and enabling proactive medical interventions [1]-[3].
Nanosensors, leveraging materials like graphene, carbon nanotubes, and metallic
nanoparticles, offer extraordinary sensitivity due to their high surface-to-volume ratio
and tunable surface chemistry. Simultaneously, the IoT provides the infrastructure for
connecting physical devices, enabling data aggregation and remote access. However,
raw data from nanosensors is often plagued by non-linearity, cross-sensitivity, and
signal instability. Deep Learning, a subset of artificial intelligence, excels at discovering
intricate patterns in high-dimensional, noisy data. Its hierarchical feature extraction
capability is ideally suited to interpret complex, multi-modal sensor signals,

transforming raw data into actionable insights [4].

Despite their potential, the widespread deployment of nanosensor networks for critical
monitoring remains hindered by several intertwined issues. First, nanosensors are
inherently prone to drift and poisoning in dynamic, unfiltered environments (e.g.,
wastewater, biological fluids), leading to unreliable data [5]-[6]. Second, discriminating
between target analytes and confounding interferents in complex matrices is a
formidable analytical challenge, often requiring bulky, laboratory-based
instrumentation. Third, the vast, continuous data streams generated by distributed

sensor nodes overwhelm traditional cloud-centric IoT models, causing latency, privacy
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concerns, and high bandwidth costs. Existing solutions typically rely on periodic

manual recalibration or simplistic cloud-based analysis, which are neither scalable nor

real-time. There is a critical gap in creating intelligent, self-adaptive nanosensor

systems that can perform robust, on-site signal processing and decision-making [7]-

[15].

This work introduces a novel, DL-driven co-design of the sensing material, hardware

interface, and data analytics stack. The key novelties are:

l.

Algorithm-Sensor Co-optimization: The DL model architecture is informed by
the known physical and chemical response characteristics of the nanosensors,

moving beyond a purely data-driven "black box" approach.

Edge-Native Intelligence: Deployment of a pruned quantized CNN-LSTM
model directly on a low-power microcontroller unit (MCU) within the sensor
node, enabling real-time inference without constant cloud dependency. This

ensures low latency, enhanced privacy, and operational resilience.

. Multi-Task, Multi-Modal Learning: A single DL model is trained to

simultaneously perform analyte quantification, sensor health diagnosis (drift
detection), and data quality flagging, leveraging both temporal (LSTM) and
spectral/spatial (CNN) features of the sensor signal.

Open-Source Framework: Provision of a complete hardware blueprint and
software repository for the IoT gateway and edge DL model, facilitating

replication and advancement in the community.

The primary objective is to design, fabricate, and validate a fully integrated DL-IoT-

nanosensor platform for dual-use in environmental and biomedical monitoring. Specific

objectives are:

1.

To functionalize and characterize multiplexed electrochemical nanosensors for
target analytes in water (heavy metals, pathogens) and simulated biological

fluids (metabolites, hormones).
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2.

2.

To develop and train a hybrid CNN-LSTM model capable of accurate analyte
concentration prediction and sensor condition monitoring from time-series

impedance and voltammetric data.

. To implement model compression techniques (pruning, quantization) for

deployment on an edge 1oT device (e.g., ESP32 with Al accelerators) and design

a low-power loT gateway for secure data transmission.

To empirically validate the system's performance in controlled and semi-
controlled environments, benchmarking its accuracy, precision, and robustness

against state-of-the-art methods.

. To demonstrate a proof-of-concept distributed network where multiple nodes

communicate processed alerts to a central dashboard.

Proposed Methodology

The proposed methodology follows a holistic pipeline from sensor fabrication to cloud

dashboard, with embedded DL as the core processor.

The system comprises three layers:

l.

Sensing  Layer: Custom-fabricated screen-printed electrodes  (SPEs)
functionalized with nanomaterials (e.g., AuNP-decorated reduced graphene
oxide for heavy metals, antibody-conjugated ZnO nanowires for pathogens). The
analog front-end is a miniaturized potentiostat (e.g., LMP91000 or AD5940)
controlled by an MCU.

Edge Intelligence Layer: The primary MCU (e.g., ESP32-S3 with vector
extension) runs the compressed DL model. It collects raw cyclic voltammetry
(CV) or electrochemical impedance spectroscopy (EIS) data, performs real-time

inference, and outputs concentration, confidence score, and sensor health status.

. Cloud & User Layer: Processed data packets (greatly reduced in size) are sent

via LoRaWAN/Wi-Fi/BLE to an loT gateway (Raspberry Pi), which relays it to
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a secure cloud server (AWS IoT Core). A web dashboard visualizes real-time

maps, trends, and alerts.

Raw Signal Acquisition J

Signal Preprocessing

Quantized CNN-LSTM Model

Inference Result

Nanosensor Potentiostat
Array AFE

i ~ User
) Dashboard

Figure 1: Proposed Framework Model
Algorithm Steps:
A. Data Acquisition & Preprocessing:

1. Stimulus Application: MCU instructs the potentiostat to apply a voltage sweep
(CV) or AC frequency sweep (EIS) to the working electrode.

2. Signal Conditioning: Raw current/voltage data is filtered using a moving

average filter and normalized to a baseline recorded in a clean buffer.

3. Feature Window Creation: For CV, the data point vector forms a 1D "image".
For EIS, Nyquist plot coordinates are used. A sliding window of the

last N chronological scans creates the input tensor for temporal analysis.

B. Deep Learning Model Design &  Training (Offline/Cloud):
We propose a Hybrid CNN-LSTM Model:
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Input: 3D Tensor of shape (Timesteps, Data Points per Scan, Channels=1).

CNN Block: Two 1D convolutional layers (filters=32,64, kernel=3) with ReLU
and MaxPooling extract local, invariant features from individual scans (e.g.,

peak shapes, shoulder positions).

LSTM Block: The flattened feature sequences from the CNN are fed into a two-
layer LSTM (units=50) to model temporal dependencies and drift patterns across

sequential measurements.
Multi-Task Heads:

o Head 1 (Regression): Dense layers for concentration prediction of each

analyte.

o Head 2 (Classification): Softmax layer for sensor status (Normal,

Drifting, Fouled).

Loss Function: Combined Mean Squared Error (MSE) for regression and

Categorical Cross-Entropy for classification.

Training Data: Generated from lab experiments with systematic variation of

analyte concentrations and deliberate introduction of interferents and simulated

drift.

C. Edge Deployment & Inference (Online/Edge):

1.

Model Compression: The trained TensorFlow/Keras model undergoes pruning
(removing insignificant weights) and post-training quantization (INT8) using the

TensorFlow Lite for Microcontrollers (TFLite Micro) framework.

Embedded Code Generation: The quantized .tflite model is converted to a C

array and integrated into the ESP32 firmware.

. On-Device Inference Loop:

a. New sensor scan is preprocessed.
b. TFLite Micro interpreter is invoked on the input tensor.

c. Model outputs concentration values and status probability.
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d. If status is "Drifting," a self-calibration routine (using an on-board reference
solution) 1s triggered. If "Fouled," an alert is sent for maintenance.
e. Only processed results (or raw data at low frequency for model retraining) are

transmitted, optimizing bandwidth.
D. IoT Communication & Cloud Analytics:

Processed data packets are published via MQTT protocol. The cloud server runs rules
engines to trigger SMS/email alerts for threshold breaches and aggregates data for long-

term trend analysis using simpler statistical models.
3. Results and Discussion

Nanosensor Fabrication: SPEs were modified via drop-casting of nanocomposites.
SEM confirmed uniform nanostructure morphology. Electrochemical characterization

showed enhanced active surface area.

Hardware Platform: The sensing node used an ESP32-S3 MCU (dual-core, 512KB
SRAM, Al vector instructions) coupled with the AD5940 potentiostat chip for high-
precision, low-noise measurements. A custom PCB integrated power management
(LiPo battery/solar), the sensor interface, and a LoRa E22 module for long-range

communication.

Software Stack: Firmware was developed in Arduino/C++ using the TFLite Micro
library. The IoT gateway used Python with PyTorch for optional secondary analysis.
The cloud backend was built on AWS IoT Core, Lambda, and DynamoDB, with a
React.js dashboard.

Performance Metrics & Discussion:

The system was tested for two scenarios: 1) Detection of Pb** and E. coli in tap water
spiked with humic acid (interferent). 2) Detection of cortisol and glucose in artificial
serum.

A dataset of 15,000 scans per scenario was generated. The model was trained on 70%,

validated on 15%, and tested on 15%.The table 1 shows the performance comparison.

Page | 547


https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-532

Musik in Bayern
ISSN: 0937-583x Volume 90, Issue 12 (Dec -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-532

Table 1: Performance Comparison (Test Set)
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*Includes network latency and cloud compute time/power.

The proposed DL-edge system consistently outperformed traditional linear calibration
by a large margin (>17% accuracy gain), demonstrating its superior ability to handle
non-linear responses and interference. The performance was nearly on par with a more
complex cloud-based DL model, but with a 16x reduction in inference latency and

a 6.7x reduction in system power, crucial for battery-operated field deployments. The
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high precision and recall across all analytes confirm effective multi-analyte

discrimination.

The embedded model's small memory footprint (<150KB) allowed it to reside
comfortably on the ESP32-S3. The multi-task learning successfully identified simulated
drift events with >96.5% accuracy, enabling proactive management. The minor
performance drop in the biomedical scenario is attributed to the higher complexity of

the serum matrix, suggesting future work on more diverse training data.
4. Conclusion and Future Work

This work successfully demonstrated a fully integrated, DL-driven IoT nanosensor
platform that significantly enhances the reliability and intelligence of environmental
and biomedical monitoring. By embedding a compressed hybrid CNN-LSTM model
directly at the edge, the system achieves laboratory-grade analytical performance in
field-deployable hardware, autonomously mitigating key issues like drift and
interference. This paradigm shift from "dumb" sensors to "self-aware" intelligent nodes
reduces bandwidth dependency, ensures real-time response, and enhances system

robustness.

Future work will focus on: 1) Implementing federated learning across the sensor
network to collectively improve models without sharing raw data, enhancing privacy
and adaptability to local conditions. 2) Exploring self-powered nanosensors using
energy harvesting (piezoelectric/triboelectric) to create truly autonomous nodes. 3)
Extending the sensing palette to volatile organic compounds (VOCs) for air quality and
disease breathalyzer applications. 4) Conducting long-term field trialsin real
wastewater treatment plants and clinical settings to validate durability and performance

under uncontrolled variability.
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